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ABSTRACT

Inversion layer solar cells have been fabricated by etching through

the diffused layer on p-type silicon wafers in a comb-like contact pattern.

The charge separation comes from an induced p-n junction at the surface.

This inverted surface is caused by a layer of transparent material applied

to the surface that either contains free positive ions or that creates donor

states at the interface. Cells have increased from 3 ma I to 100 ma by
sc

application of sodium silicate. The action is unstable, however, and decays

with time.

Other substances have been applied to achieve a stable inversion

layer, but none were found. Encapsulation slowed the rate of decrease in

the output, but did not stop it. Stable strong inversions are possible with

tin oxide on n wafer mesa cells, but the contacts deteriorated slowly.

Non-mesa contaminated oxide cells were fabricated with short cir-

cuit currents of over 100 ma measured in the sun. Cells of this type have

been stable for over a year.



SUMMARY

Transparent electrode cells that require a thin insulating coating

of large area, with no leakage or shorts under bias, were extremely difficult

to fabricate. Experiments designed to produce this layer were unsuccessful,

yielding shorts or high leakage paths under bias. Substances such as

silicon dioxide, silicon monoxide and sodium silicate were applied in various

ways, and none yielded a defect-free transparent insulating layer.

The work on the transparent electrode cell was terminated and

efforts directed to the development of a contaminated layer cell. The pro-

cess developed seems to promise a cell which could be manufactured using

state-of-the-art technology, and be adaptable to low cost large volume

fabrication practices. An n-layer is first diffused on the silicon wafer

surface; following diffusion of the n-layer, titanium-silver is then

evaporated over the entire diffused surface. Using photolithography, a

comb-like pattern is delineated exposing the titanium-silver. The titanium-

silver is removed in the exposed areas by etching. With the photoresist

still in place, the exposed diffused surface is then etched away exposing

the base silicon. Mesas are thus formed. A coating of material designed to

create donor surface states or supply positive ions on the surface is applied.

Various substances were tried but the most successful was sodium silicate. A

2x2 mesa cell without an inversion region yields about 3 ma. After proper

treatment with sodium silicate, outputs as high as 115 ma Isc have been

measured.

Other means of creating an inversion region such as sodium ions

in silicon dioxide were not adequate.



Thus far, the sodium silicate layer has not produced a stable cell.

After the sodium silicate is applied, the output decreases over a period of

time to that of the cell before the sodium silicate was applied.

Other substances such as tin chloride and sodium borate were

applied to the surface. These two did create a significant inversion layer,

but many others did not. None produced a stable output.

The cells were potted in transparent substances and placed in

evacuated chambers in an attempt to halt the degradation, but the decrease

still occurred although at a slower rate.

Tin oxide on n wafers produced a p type inversion on mesa cells.

Short circuit currents of 105 ma were obtained. These cells were also

unstable; however, the instability is probably due to a deterioration of

the contact rather than a loss of the inversion layer.

Stable contaminated oxide cells were fabricated but these are

not of the mesa type. Short circuit currents of over 100 ma were achieved

at 140 mw/cm2 exposed to the sun.



TABLE OF CONTENTS

Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Basic Conventional Cell Description . .......... 1

B. Basic Transparent Electrode Cell Description . ..... . 2

II. TRANSPARENT ELECTRODE CELL ..... . . ......... . . 3

A. Transparent Electrode Growth . ............. . 3

B. Low Temperature Insulating Oxides . ........... 3

C. Methods of Testing Dielectrics ...... . . ........ 3

D. Growth of SiO 2 Using SiC14 . . . . . . . . . . . . . . . . 4

E. Slow Evaporation of SiO . ...... ... ... ... . 6

F. Sodium Silicate Insulating Layers . ... . ...... . . 7

G. Discussion of Perfection of Insulating Layers . ..... 7

H Spin-on Transparent Electrodes . ............. 8

III. MESA CELL ............. .. ... . . ...... . . 9

A. General Description . ...... . . . . . . .... . . . 9

B. Mesa Cells with Aluminum Contacts . ........... 10

C. Mesa Cell with Titanium-Silver Contacts . ........ 12

D. Wax Etch Masks . . . . . . . . . . . . . . . . . . . ... 12

E. Buffered Silicon Etch . .. ... . . . ......... . 13

F. Low to High Output . ...... ..... . . . ...... . . . 14

G. Degradation of Cell Output . . . ............. . 15

H. Encapsulation . ...... . . ............. . 15
I. Inverting Material Evaluation . ............. . 17

Data in Chronological Form . ......... .. ..... 18

Antimony Trichloride . .... ......... .. ... 18

Bismuth Nitrate . ......... . ......... 19
Bismuth Trichloride . .. . . . .. . .. . . . . . . .. 19
Lead Acetate . ............. . ... .. .... . 20
Lead Chloride . . . . . . . . . . . . . . . . . .. ... . 20
Selenium Dioxide . .. .. . . .... ... .. . . . . 20
Sodium Stannate . .. . . .. . . .. .. . .. . .. .. 21
Stannous Chloride . . . . . . . . .. . . . . . . . .. . 21
Mercuric Nitrate . .. .... ...... ... . .. .. 23

' Ammonium Phosphate . .................. . 23
Calcium Phosphate .. ................. . 24
Potassium Phosphate ................... . 24
Sodium Metaphosphate . .. . . . .. . . . . .. . . ... . 24
Trisodium Phosphate ....... . ........ . . . . 25
Conclusions . ... . . . . . . . . . . . . . . . . . . . . 25



TABLE OF CONTENTS (Continued)

Page

J. Tin Chloride Spin On . . . . . . . ............... . ...... 32

K. Inverting Surfaces from Evaporated Layers . . . . . . . . 33

Group N Cells . . . . . . . . . . . . . . . . . 37

L. Contaminated Oxide on Mesa Cells . ........ . . . . 39

M. Tin Oxide on n Wafers . ...... .......... . 40

N. Incremental Etch Experiment ..... . .. ......... 44

IV. CONTAMINATED OXIDE CELL . ...... . . . ............. 52

V. MEASURING APPARATUS . . . . . . . . .. . . ........ . . ...... 57

VI. CONCLUSIONS . . . . . . . . . .. . . . . ................ . 57

VII. FUTURE INVESTIGATION . .. . . . .... . .............. 59



I. INTRODUCTION

A. Basic Conventional Cell Description

In a conventional diffused p-n junction, solar cell power is

extracted from the cell by the separation of light generated hole electron

pairs within the built-in electric field across the junction. This field

results from the diffusion of p-type carriers (holes) from the p-type bulk

into the n-type area and the diffusion of n-type carriers (electrons) into

the p-type bulk.

The collection efficiency of a solar cell is the probability that

a hole electron pair will be separated in the electric field before recombina-

tion takes place. The collection efficiency depends on how far away from the

junction hole electron pair generation takes'place and on the diffusion length

of the generated carriers.

For maximum efficiency certain trade-offs must occur. A thick n

region is desirable to obtain a low series resistance. However, a thick n

layer means that hole electron pairs generated close to the surface by shorter

wavelengths of light must travel a longer distance to reach the junction.

This increases the probability that they will.recombine before reaching the

junction. The optimum junction depths must be selected from a compromise

between these two criteria.

Another area where a trade-off occurs is in the doping level of

the n diffusion. A high doping level is desired to obtain a low series

resistance. However, a high doping level results in a short recombination

time which will decrease the collection efficiency of the cell for shorter

wavelengths of light.

1
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The end result of these trade-offs is that efficiency in the short

wavelengths of light is sacrificed in order to improve the overall performance

of the cell.

B. Basic Transparent Electrode Cell Descriotion

It is proposed that a solar cell with a thin induced inversion

region would be more efficient in the shorter wavelengths of light than a

standard diffused cell. This inversion region would occur right at the sur-

face of the cell which would reduce the distance that hole electron pairs

generated by short wavelengths of light would have to travel before being

collected.

One method of inducing an inversion region is to use the capacitor

principle to attract electrons to the surface from the bulk of a p-type wafer

and to repel positive carriers away from the surface of a p-type wafer. This

creates an inversion region next to the surface of the wafer. This principle

is used in the transparent electrode cell whose cross section is shown in

Fig. 1. The transparent electrode must be biased positively with respect to

the back contact of the cell in order to induce an n region at the surface of

the wafer. An electric field is formed across this inversion region similar

to the electric field across the junction in a diffused solar cell. This

electric field can be used to separate light generated hole electron pairs.

The n diffusions shown in Fig. 1 are there to make contact with the inversion

region.

An inversion region can also be induced in a p-type wafer by fixed

positive ions in a transparent layer on the wafer surface.

The contaminated oxide cell uses sodium ions incorporated into a

thermally grown silicon dioxide layer. The ions are introduced into the
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silicon dioxide by mixing NaCI with the water that is boiled and passed

through the furnace where oxidation takes place.

II. TRANSPARENT ELECTRODE CELL

A. Transparent Electrode Growth

The problems of growing a consistent transparent electrode have been

solved by modifying the transparent electrode growth apparatus. The new setup

is pictured in Fig. 2. It is believed that much of the SnO 2 was deposited on

the sides of the long furnace tube in the old apparatus, rather than on the

wafer. In the new apparatus the wafer is placed on a ceramic heating block

and placed in a 10" long tube. The wafer is heated by passing a current

through the tungsten wire incorporated in the heating block. The normal mix-

ture of SnCl 3fumes, nitrogen, and oxygen is then passed through the tube.

This method produces more consistent results than the old method.

B. Low Temperature Insulating Oxides

In order to reduce the time and complexity involved in processing

transparent electrode cells, much work was done in the area of growing low

temperature oxides. Growth of oxides at relatively low temperatures

increases cell efficiency in that a high temperature oxidation will cause

lattice faults which reduce the recombination time for hole electron pairs.

In addition, a low temperature oxide will not drive the n-diffusion deep into

the wafer.

C. Methods of Testing Dielectrics

In order to test the dielectric integrity of the various oxides

that were tried, a pattern of conducting dots was put on the oxide to be

checked. A square array of eight dots on a side was used. Conducting silver
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paint was used to form the dots. The breakdown characteristic of the oxide

was then tested on a Type 575 curve tracer. Contact was made to the back

surface of the cell by a brass block and a movable needle point was used to

make contact to each dot in turn. Since the dots covered approximately 50%

of the total cell area, a good estimate of the number of dielectric faults

per unit area could be obtained. A diagram of this test apparatus is shown

in Fig. 3.

In previous work with the transparent electrode subcells, it was

found that a 3000 A insulator was optimum. Using this oxide thickness, it

was found that a positive bias with respect to the back contact of 50 v was

sufficient to create a strong inversion layer. Therefore, all dielectrics

fabricated were tested for breakdown at an applied voltage of up to 50 v.

D. Growth of SiO2 Using SiC1

The first dielectric to be tried was Si02 grown at low temperature

by a reaction of silicon tetrachloride and oxygen on the surface of the wafer.

The apparatus used to grow the SiO 2 is shown in Fig. 4. Nitrogen is used as

an inert medium to carry the SiClq fumes into the reaction chamber where the

SiC14 combines with the oxygen to form SiO 2.

Experiments were made using a wide range of temperatures and flow-

rates in an effort to produce a faultless oxide layer. It was found that the

flowrates of the nitrogen and oxygen had little affect on the oxide produced,

or on the rate at which the oxide grew. Temperature was found to be the

critical factor, and temperatures from 00 C to 3000 C were tried. It was found

that a temperature of 00 C produced the best Si0 2 layer using this method.



After applying the silver dots and testing, it was found that none

of the areas tested would stand up to the 50v bias. The reason for this was

evident after examining the oxide layer with a microscope. There were many

pinholes and imperfections which would allow shorts to occur.

Next a commercially available spin--on oxide was tried. The spin-on

oxide selected was Emulsitone's Silicafilm SiO 2 . The oxide was spun on at

5000 rpm which resulted in an oxide thickness of approximately 3000 A. After

spinning, the wafer was heated to 300C for 5 minutes to harden the oxide

layer.

Testing the oxide using the silver dot method showed that most of

the cell area would not support a bias of 50v. Only about 10% of the area

withstood the full 50v bias.

Again examination under a microscope showed that many pinholes and

faults existed in the oxide layer. The pinholes were not as numerous or as

large as those that occurred using the SiC14 and oxygen reaction method,

however.

It was thought that spinning several thin layers whose thickness

added up to 3000 A would help alleviate the pinhole problem. If pinholes

were a purely random occurrence, the probability of having a pinhole in an

identical position through several layers of oxide would be small.



Again testing showed that only 10% of the cell area would withstand

the 50v bias. Evidently once a pinhole is formed in the initial oxide layer,

the defect will propagate through successive layers of oxide that are spun on

at a later time. The exact cause of the pinhole problem is not clearly under-

stood. It could be that there are extremely small particles in the spin-on

oxide solution that cause pinholes. In addition, some sort of surface con-

tamination could occur on the wafer even though the wafers were cleaned

thoroughly before processing.

A spin-on SiO2 made from methanol, deionized water, and silicon

tetrachloride was tried. After the spin-on solution was mixed, it was

thoroughly filtered in an effort to remove all particulate contamination. A

single coat of Si02 was spun on at 5000 rpm and baked for 5 minutes at 300
0 C.

Again testing showed that only about 10% of the cell area would not

break down under a 50v bias. Spinning several coats of the SiO2 mixture on

the wafer did not improve the 10% figure appreciably. The results obtained

with the mixure of methanol, deionized water, and silicon tetrachloride pro-

duced the same results as had been obtained with the commercial spin-on.

E. Slow Evaporation of SiO

An evaporated coating of SiO was tested next. The SiO was evaporated

-5
at a slow rate in a vacuum of 10- 5 Torr. It was thought that a slow evapora-

tion rate might promote the formation of Si0 2 on the wafer surface through

combination of the SiO and the residual oxygen in the vacuum chamber. It was
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desired to form SiO 2 on the wafer rather than SiO due to the fact that

Si0 2 has a higher dielectric breakdown.

Testing showed that .approximately 60% of the cell area would not

break down under a bias of 50v. Close inspection under a microscope did not

reveal any pinholes. There could be small pinholes in the oxide that could

not be resolved by the microscope, however. The evaporation of several thin

coats of oxide to make up a 3000 A dielectric did not improve the results.

Again only about 60% of the cell area would take a 50v bias.

F. Sodium Silicate Insulating Layers

The dielectric that produced the best results was a spin-on solution

of sodium silicate diluted with deionized water. A solution of two parts

deionized water to one part sodium silicate was mixed and thoroughly filtered

to remove any particulate matter. The sodium: silicate was spun on the wafer

at 500 rpm and baked for 5 minutes at 3000C.

It was found that 90% of the cell area would support a bias of 50v.

Approximately half of the faults located were not shorted initially. These

faults would appear at some period of time ranging from 5 minutes to 1 hour

after the 50v bias was applied. It was also noted that some of the faults

could be "burned out" by briefly applying a high voltage to the silver dot

where the fault was located. Unfortunately, not all of the short-circuited

areas could be repaired this way.

G. Discussion of Perfection of Insulating Layers

None of the low temperature dielectrics fabricated would be suitable

for a full 2x2 cm transparent electrode solar cell. Many wafers were fabri-

cated using the different dielectrics pnd not one was entirely free of

dielectric breakdowns at a bias of 50v.
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In order to obtain a comparison between the dielectric strength of

the low temperature dielectrics and a high temperature steam grown oxide,

the silver dot pattern was applied to a wafer with a 3000 A steam grown

oxide. Every silver dot in the 8x8 matrix withstood a 50v bias. The bias

had to be increased to nearly 100v before breakdown occurred.

The fact that no breakdowns occurred was not consistent with

results obtained in fabricating the transparent electrode subcells. It was

found when testing the subcells that approximately 20% of the subcells on

each wafer exhibited some form of breakdown before a bias of 50v was reached.

The 20% failure for the subcells can be explained by the fact the

HF etch faults exist in thermally grown SiO 2 layers. The HF penetrates into

and removes the SiO2 in the faults very quickly. This leaves an opening where

the transparent electrode material can short -to the p-type surface of the

wafer very easily. These electrical short circuits caused by etch faults

make processing a full 2x2 cm transparent electrode cell even with a thermally

grown oxide nearly impossible.

H. Spin-on Transparent Electrodes

A commercially available spin-on transparent electrode material was

evaluated to find out whether or not it could be etched successfully without

the use of HF. The material used was Emulsitone Solution #673. After the

wafer had a 3000 A thermal oxide grown on the surface, the spin-on transparent

electrode was spun on and baked. A photoresist pattern was applied over the

transparent electrode. A paste made of powdered zinc and Karo syrup was

painted over the surface of the wafer and the wafer was placed in a solution

of one part deionized water to one part llC1. This procedure removed most of

the transparent electrode material from the areas to be etched. Successive
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etches did not remove any more of the undesired transparent electrode. HF

removed the remaining transparent electrode material, however, but the use

of HF resulted in the occurrence of short circuits from the transparent

electrode to the p-type silicon wafer.

At this point it was decided to abandon efforts to produce a large

area transparent electrode cell. The problems associated with fabricating

a perfect dielectric and etching of the SiO 2 layer cannot be solved with

current processing techniques. Work was then started on the Mesa cell as

described in the following section.

III. MESA CELL

A. General Description

The Mesa Cell as pictured in Fig. 5 was constructed by diffusing

an n-type dopant into a 2x2 cm p-type wafer. Then the metal contact was

evaporated over the front surface of the wafer. Photoresist was applied

and.developed into the contact pattern. The metal was then etched from

the areas not protected by photoresist. A silicon etch was used to remove

the n diffusion from all areas not covered by the metal contact pattern.

Metal was evaporated over the back surface of the wafer and the wafer was

sintered. A layer of transparent material having the property of inducing

an inversion layer in the surface of the semiconductor was then applied to

the front surface of the wafer.

The primary advantage of the Mesa Cell is the short amount of

time. required to process cells. Two high temperature oxidation steps and

a low temperature diffusion were needed to fabricate contaminated oxide

cells. A single low temperature diffusion is all that is required in

the processing of a Mesa Cell. The lack of exposure to high temperatures
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(1100C or above) will tend to increase the efficiency of the Mesa Cell.

Exposure of single crystal silicon to a thermal cycle from room tempera-

ture to 11000C or more and then back to room temperature creates lattice

faults which tend to reduce the recombination time which will lead to an

overall decrease in efficiency of a solar cell.

Three photoresist steps are required in the processing of a

contaminated oxide cell, one to open holes in the initial oxide to allow

diffusion to occur, one to open contact areas in the contaminated oxide,

and one to etch the metal contact pattern. Only one photoresist operation

to etch the metal pattern is required to fabricate the Mesa Cell. The

simplified process schedule also increases the yield for a given batch

of cells.

The procedure of diffusing the entire surface of the Mesa Cell

eliminates many of the leaky junctions that can occur in the processing of

Contaminated Oxide Cells, due to high leakage from contact to the p wafer.

During the first photoresist process in fabricating Contaminated Oxide

Cells, either defects in the mask or impurities in the photoresist could

cause spots of photoresist to remain over areas that should be etched off

to allow diffusion to occur. This would result in electrical short cir-

cuits across the junction due to the metal contacts making electrical

connection to the p-type bulk.

B. Mesa Cells with Aluminum Contacts

The first successful Mesa Cells had a junction depth of 3-4p

which resulted from a 40 minute POC13 diffusion at 94500C. The silicon was

etched to a depth of approximately 7p. A solution of 5 ml of HF to 45 ml

of nitric acid was used to etch the silicon.



Aluminum was used as the contact metal because of its resistance

to the silicon etchant. Even if the protective photoresist peels off the

aluminum contact pattern during the silicon etch, the aluminum will not be

entirely etched off during the remainder of the etch. A detailed process

schedule for the Mesa Cell is given in the Appendix.

The sodium silicate, used as the contaminated spin-on source, was

made from a solution of two parts deionized water to one part sodium silicate

with 1% by weight of NaCl added. It was found that this sodium silicate layer

formed a good antireflection coating. The spin-on sodium silicate layer is

also transparent to short wavelength light.

The V-I curve for the first successful Mesa Cell is shown in Fig. 6.

Immediately after the sodium-silicate spin-on and a 5 minute heat treatment

at 250 0F, the cell output was raised from 5 ma to 90 ma short circuit current;

the open circuit voltage was 0.54 volts. The efficiency of this cell is 3.2%.

The low efficiency and poor curve factor of this cell is due to several

reasons, among them are the following: Aluminum is not the optimum contact

material due to a significant series resistance between the aluminum and the

silicon. The induced inversion is very thin which will also produce a high

series resistance. And, a contact pattern with thirty or forty fingers

rather than the twenty finger pattern used on this cell, should decrease

the series resistance caused by the thin inversion region.

It was noted that over a period of several days the output of the

cell dropped from 90 ma to 75 ma. The lower value of short circuit current

indicates that the inversion region had diminished. A five minute heat treat-

ment at 250 0F brought the short circuit back up to 90 ma. It is thought that
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the degradation in output over a period of time could be due to the

humidity in the atmosphere penetrating the sodium silicate layer and

through some mechanism passivating the contaminated layer.

C. Mesa Cell with Titanium-Silver Contacts

The next group of Mesa Cells that were processed had titanium-

-silver contacts. Titanium-silver contacts were used in an effort to reduce

the series resistance of the cell. Much difficulty was encountered in doing

the silicon etch after the titanium-silver contact pattern had been etched.

The silicon etchant would undercut the titanium-silver very quickly causing

the photoresist to lift around the periphery of the contact pattern result-

ing in severe contact damage.

The output of cells constructed using a shorter silicon etch time

would not increase appreciably after spinning on sodium silicate, and heat

treating. This was thought to be caused by the stained area around the

periphery of the contact pattern where the silicon etch had attacked the

titanium-silver. This stained area could be insulating the inversion layer

from the n diffusion.

D. Wax Etch Masks

In order to overcome the problem of undercutting that occurred when

photoresist was used as a mask against the silicon etch,.a method of using

Apiezon wax as a mask against the silicon etch was devised. A set of twenty
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razor blades with spacers between the blades was used as a stencil to apply

the wax. The wafer to be etched was heated to a temperature slightly greater

than that required to melt the wax. The razor blades were.dipped in molten

wax and pressed down on top of the wafer. This left a set of twenty parallel

lines of wax on the wafer. The broad center contact was put on with a thicker

blade using the same method. The wax pattern solved the undercutting problem

and it was possible to do a deep etch (7p) without seriously undercutting the

titanium-silver contact.

Again, after spinning on sodium silicate and giving the wafers a

five minute heat treatment, the outputs did not come up appreciably. The

outputs ranged from 5 ma to 7 ma. Close inspection of the wafers under the

microscope again revealed a stained area around the periphery of the contact

area. As before, this was thought to be the reason for the poor output

obtained.

The titanium-silver contacts did improve the series resistance of

the cell. A resistance of .5 Q was obtained with titanium-silver versus the

.8 Q series resistance obtained when aluminum contacts were used.

E. Buffered Silicon Etch

At this point a number of experiments were performed to develop a

milder silicon etch that would be compatible with the photoresist process

and that would not cause staining. It was found that a silicon etch consist-

ing of, by weight, 8% hydrofluoric acid, 32% nitric acid, and 60% acetic acid

met the preceding criteria. In order to prevent staining from occurring, the

beaker containing the silicon etchant and the wafer undergoing the etching

process had to be quenched with large amounts of deionized water when the

etch was terminated.
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A group of cells was fabricated using the new silicon etch solution.

Prior to spinning on sodium silicate, the cells were examined under a micro-

scope. There was no appreciable staining evident around the contact fingers.

Again, after spinning sodium silicate and heat treating the wafers for 5

minutes at 250 0 F, the outputs remained low.

F. Low to High Output

After a period of approximately two weeks, all Mesa Cells previously

fabricated were retested using a different heat treatment. The heat treatment

started out at 250 0F and progressed to 700 0F in 500F increments.

A V-I curve for a typical Mesa Cell with aluminum contacts is

shown in Fig. 7. The short circuit current is 92 ma and the open circuit

voltage is .46v after a heat treatment of 5 minutes at 250 0 F. After a heat

treatment of 5 minutes at 400 0 F, the short circuit remains at 92 and the open

circuit voltage increased to .5v. After a further heat treatment of 5 minutes

at 600*F, the short circuit current increased to 96 ma.and the open circuit

voltage increased to .52 volts. The efficiency of this cell increased from

2.9% to 4.4% after heat treatment. The V-I curves for this cell after the

4000F heat treatment and the 600
0 F heat treatment are shown in Fig. 8 and

Fig. 9.

A V-I curve for a Mesa Cell using titanium-silver contacts with

the razor blade pattern is shown in Fig. 10. The short circuit current is

100 ma and the open circuit voltage is .52v. An efficiency of 4.9% is

obtained with this cell. Initially, the output on this cell was low. After

a period of several weeks, the cell was given a further heat treatment to

7000F which produced the results given.
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A V-I curve for a Mesa Cell with titanium-silver contacts that

was etched using the photoresist process is shown in Fig. 11. The short

circuit current is 110 ma and the open circuit voltage is .49 v. This

cell was given a heat treatment up to 700 0F which produced the results

given. The overall efficiency of this cell is 4.3%.

G. Degradation of Cell Output

All cells whether constructed with aluminum or titanium silver

contacts will degrade over a period of time. The rate of degradation will

vary widely from cell to cell. Some degrade significantly in a matter of

hours and some require several days. All of them will eventually degrade

to the same value obtained before the inverting material was applied.

This degradation is thought to be due to the formation of a

passivating oxide layer on the silicon surface. A slight room temperature

oxide exists on the surface before the sodium silicate is spun on, and the

heat cycle causes the sodium silicate to penetrate this slight layer and

act with the surface to cause surface states. At this point the output

of the cell will be comparatively high. The surface will, in time, oxidize

again, thereby passivating the surface and reducing the surface state

density. Eventually the state will be eliminated and the cell output return

to the original output. Further heating will start the cycle again with

high output and subsequent degradation.

H. Encapsulation

Evidence exists that the degradation of the cell is enhanced by

the intervention of water vapor on the surface. Sodium silicate is

deliquescent and the output decrease can be'very rapid if it is dipped in
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water or "breathed on". Encapsulation to prevent water vapor from reaching

the surface may be an answer to the problem.

Several inversion Mesa Cells were maintained for a number of days

in a dessicator that was evacuated with a vacuum pump. Frequent Isc

measurements were made to follow the decreasing output of the cells. The

cells were then left out of the desiccator and the output measured period-

ically. Figure 12 shows the results for one such cell, and Fig. 13 for

another. Both cells show a definite dependence on an isolated atmosphere

to keep from deteriorating rapidly.

Humidity is probably not the direct cause of cell output decrease

but acts like a catalyst to enhance another cause of deterioration such as

an oxide layer. A strong indication that the latter is true is the decrease

in the cell output while in the desiccator. The output should decrease only

to the extent that it was exposed to the atmosphere during measurement.

Water vapor is retained by the sodium silicate, however, and even though

the atmosphere surrounding it in the desiccator has no water vapor, the

water vapor that was absorbed might not leave the sodium silicate layer and

continue to degrade the cell. Heating usually restores the high output of

the cell by driving the water vapor out and restoring the mechanism creating

the inversion layer in the first place.

Attempts at encapsulation were unsuccessful. The output of a cell

was followed for a few days and its rate of change observed. The cell was

brought up to maximum performance again and a coating of Krylon sprayed on

the surface. The output still decreased but at a slower rate. Another cell

was chosen whose Isc output was 8 ma. After heating the output rose to 38

ma. A thin sheet (.001") of mylar was cemented on the cell with Krylon and



17

the output of the cell dropped to 32 ma. After two hours the cell dropped

to 6 ma. This type of encapsulation obviously does not work.

A cast type epoxy resin was used to encapsulate the cell, but

after the encapsulation, contact to the cell was rather difficult. Any

attempt to remove the encapsulant also removed the metal contacts. Leads

could not be soldered to the cell before encapsulation because the cell has

to be heated to temperatures quite above the soldering temperature. Trying

to solder after sodium silicate is applied is also a problem. Our attempts

at encapsulation were not successful.

I. Inverting Material Evaluation

The search for a transparent material that has the property of

creating a stable inversion layer in silicon was initiated and a number of

different chemicals were evaluated. A total of fourteen compounds were

tested, mostly from the Group IV and V elements. Two methods of application

were employed where circumstances permitted: spin-ons using a high speed

photoresist spinner, and melting compounds directly on the cells.

In general, the cells were subjected to a heat cycle after having

the contaminant applied. Their behavior after spin-on, during heating, and

through the subsequent observation period, has been noted and tabulated in

the data section of this report.

Four series of cells are found in the discussion of experimental

results. Series "A" and "E" are titanium-silver contact cells using a 20

minute predeposition in POCL3 at 9450C. The "A" cells were etched for

fifteen seconds in 45-16-4 etch (HAC, HNO3, and HF in milliliters, respec-

tively). The series "E" cells were etched for forty seconds in 60-16-4

etch.
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The "B" and "C" series cells are aluminum contact cells using the

same predeposition. Both series were etched forty seconds in 60-16-4 etch.

Group IV and V element compounds were evaluated because it was felt that

their characteristics would aid in the formation of surface states on the.

cell.

Many of the theoretically promising chemicals could not be tested

for a variety of reasons. Several were of the exotic variety, unavailable

commercially. Others, most notably arsenic and phosphorous compounds, were

deleted due to the difficulty and danger of handling the materials. The

chemicals tested were compounds of antimony, bismuth, lead, selenium, tin,

and several phosphate compounds. The phosphates were used to represent the

phosphorus group as the phosphorous compounds which were available were

highly toxic and volatile. In general, the chemicals were selected on the

basis of transparency, solubility, melting point, and general availability.

Data in Chronological Form

The fourteen contaminant solutions were applied and tested in

numerous ways. The most noteworthy results for each contaminant will be.

stated, with'subsequent reference to further information-contained in the

data tabulation section. The reference notes refer to individual cell

designations in Table 1.

Antimony Trichloride

Antimony trichloride was spun on two silver-titanium cells and

caused !a post spin increase for 73 to 87 ma and from 11 to 13 ma on the two

cells. Heating the higher output cell through a standard heat treatment

caused the output to decrease and stabilize at 80 ma. The compound changed
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to an opaque white coating at approximately 6000 F. The net increase of 7 ma

was stable over a two-week period. Application by melting the antimony

trichloride resulted in a slightly translucent even coating with the cell

output dropping from 19 to 14 ma.

Sodium sil.icate was spun on in conjunction with antimony trichloride

to determine the extent of interaction, if any. The cell dropped from an

initial value of 7.5 ma to 4 ma. Heating increased the output to 6.2 ma, but

the cell deteriorated to 4 ma with time. (Cells A2, A3, C4)

Bismuth Nitrate

This contaminant was spun on in a standard solution of one gram per

ten milliliters of acetone. The output increased from 3.3 to 8.7 ma, but

decreased during heating and stabilized at 3.8 ma. The net increase of 0.6 ma

was stable for two weeks. This gain may be due in part to calibration error

on the probe station. (Cell A10)

Bismuth nitrate was melted on an aluminum contact cell to compare

its effect with that of the spin-on method. An opaque white coating resulted,

decreasing the output from 22 to 18.5 ma. The compound also reacted with the

metallization with time to reduce the output to zero. (Cell Cl)

Bismuth Trichloride

The compound was spun on an aluminum contact cell and increased the

output from 8.2 to 8.6 ma. Heating produced no appreciable increase. The

cell shorted within 96 hours due to the reaction of the contaminant with the

contacts. (Cell B7) Bismuth trichloride when melted on an aluminum cell

resulted in a loss of output from 18 to 1.4 ma. (Cell C3)
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Lead Acetate

Lead acetate was spun on in standard solution (1 gm in 10 ml DI

water) on a titanium-silver cell. The output increased from 4.2 to 5.2 ma,

and reached a peak if 5.8 at 500 0 F during the heat cycle. The output decreased

to 4.8 ma within 7 days. (Cell A4)

Melting the lead acetate onto an aluminum cell resulted in a

translucent coating which decreased the output from 74 to 68 ma, at which

point it stabilized. (Cell C5)

Lead Chloride

This contaminant was spun in standard solution onto a Ti-Ag cell

and caused an immediate decrease from 3.4 to 2.9 ma. Heating reduced the

output further to a minimum of 1.6 ma at 700'F. Upon cooling,the cell

stabilized at 2.6 ma and remained there for 14 days. (Cell A 11)

Lead chloride was not applied by melting due to its high melting

point. (5010 C)

Selenium Dioxide

The compound was spun on two Ti-Ag cells in standard solution.

The outputs increased from 60 to 63 and from 19 to 23 ma. Heating had no

discernable effect on the outputs, and the compound gave off strong noxious

vapors during the heat cycle. Both cells were stable for at least several

weeks. (Cells Al, A5)

Sodium silicate was spun on one of.the cells and given a heat

treatment. The output increased from 20 to 24 ma and peaked at 100 ma at

700°F. The cell decreased to 22 ma within 48 hours. Reheating did not

regain the high output. (Cell A5)
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Sodium Stannate

The contaminant was spun on an aluminum contact cell with a

resultant increase from 25 to 28 ma. A peak output of 40 ma was attained

at 8000F during heat treatment. The cell decreased to its original value

of 25 within 96 hours.

Melting sodium stannate crystals onto an aluminum cell failed to

produce a coating due to its change to anhydrous sodium stannate at 140 0C.

Stannous Chloride

Extensive experimentation was performed using various strengths

of stannous chloride solutions after initial test yielded significant in-

creases in output.

The contaminant displayed a characteristic behavior during testing.

In general, it caused an increase of between ten and fifty percent after

spinning. Heating caused fumes to be given off and a chemical change to an

oxide of tin occurred at approximately 7000F. The output then stabilized

for long periods of time at the value attained during the change to tin

oxide.

The most notable results were the application of a 1.5 gm to 10 ml

methanol solution which increased output from 70 to 106 ma upon heating. All

cells having stannous chloride heated on their surfaces were very stable with

time. (Cell A6, A8, A12, El)

Three solutions of stannous chloride were then prepared, with

0.5, 1.5, and 2.5 grams per 10 ml methanol in the "DELTA", "ALPIIA", and

"BETA" solutions, respectively. The three solutions were applied to Ti-Ag

cells and heat treated. The process was repeated three times, and the
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characteristic behavior was evident as the compound increased the post-spin

output and further peaked during heating. 
Using the weak solution (.5 gm/10 ml

methanol) through three applications and heat treatments, 
the output increased

from 3.3 to 14 and stabilized. (Cell E2)

The "ALPHA" solution (1.5 gm/ 10 ml methanol) which was of the

same strength as the original test solution of stannous chloride, was applied

and heat treated three times. The output increased from 3 to 23 ma but,in

this isolated case, was unstable and decreased to 5.7 after 
96 hours. This

was the only instance where a stannous chloride cell was unstable, and may

be due to imperfections of the cell itself. (Cell E3)

The strong saturated solution "BETA"
' was also applied and heated

three times with significant results. After the first heat cycle, output

rose from 4.4 to 16 ma. The second application increased output to 74 ma,

but heating decreased it to a stable 21.5.ma. The third process yielded a

stable cell with a 60 ma output. (Cell E4)

Two subsequent cells were treated three times with the strong

solution but heated only twice. Their outputs rose from 3.7 to 23 and 5.0

to 33 ma. (Cells E6, E7)

The strong solution was then applied without heating on one cell

and two coats with one heat cycle were applied to a second cell. The latter

output increased from 4.8 to 32 ma and stabilized at 20 ma with time.

(Cells E8, E9)

Two other experiments were performed using stannous chloride.

Sodium silicate was spun on cell A6 and heated. The output increased from

13.5 to 55 but decreased to 4 ma within 96 hours. (Cell A6)
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Stannous chloride was also melted onto a Ti-Ag cell, increasing

output from 4.1 to 6.4 but the output decreased and stabilized at 4.2 with

time. (Ref. E5)

Several.aluminum contact cells were spun with differing strengths

of stannous chloride with the characteristic results. However, the compound

attacks aluminum and, hence, the cell outputs deteriorated rapidly with

time. (Cells B9, 10, 11, 12)

Mercuric Nitrate

Mercuric nitrate was experimented with due to its availability, as

it is a Group II element rather than a IV or V. Spinning it on an aluminum

contact cell dropped the output from 46 to 30 ma. However, the output

increased over a 96 hour period to 54 ma and stabilized at that point. No

heat treatment was applied so the increase apparently took place as the cell

dried. (Cell B8)

Melting on mercuric nitrate increased output from 35 to 36 ma, but

dropped to 12 ma over a 6-day period. (Ref. C2)

Ammonium Phosphate

Spinning on this contaminant decreased the output of an aluminum

cell from 14 to 12.5 ma. Heating produced a peak of 18 at 500 0F, but the

output decreased to its original value of 14 within 7 days. (Cell Bl)

Melting ammonium phosphate on an aluminum cell decreased the out--

put from 68 to 10 ma. An even coating was unattainable and some reaction

which disrupted the back contact was observed. (Cell C6)
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Calcium Phosphate

Two standard 1 gm to 10 ml solutions were made, one of DI water

and one of methanol. The alcohol solution spun on an aluminum cell produced

an increase from 17 to 21 ma, stable with time after heating. (Cell B2)

The water solution did not yield as even a coating and showedno significant

change in output. (Cell B3)

An attempt at melting the calcium phosphate onto an aluminum cell

was unsuccessful as its melting point is too high for the available equip-

ment. (Cell C7)

Potassium Phosphate

The compound was spun on an aluminum contact cell with a resultant

increase from 41 to 52 ma. Heating caused a -peak output of 54 ma at 700'F,

but the cell was unstable and decreased to 44 ma over a two week span. (Cell B4)

Melting potassium phosphate yielded a smooth transparent surface

but dropped the output from 25 to 8.6 ma. The coating remained liquid

rather than recrystallizing. (Cell C8)

Sodium Metaphosphate

A standard solution was spun on an aluminum contact cell and

yielded an increase from 35 to 43 ma. Heating gave a peak of 48 ma at 4000 F,

but the output was unstable and decreased.to 36 within one week. (Cell B5)

Sodium metaphosphate was melted on an aluminum contact cell and

increased the output from 70 to 76 ma. The increase was stable with time.

(Cell C10)
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Trisodium. Phosphate

A standard solution in water spun on a Ti-Ag cell decreased the

output from 5 to 2.8 ma. Heating showed a peak of 12 ma at 7000F. The

output was unstable, however, and decreased to 4.6 ma within 
24 hours.

(Ref. A7) Sodium silicate was spun on in conjunction with the trisodium

phosphate and increased the output from 3.4 to a maximum of 40 
ma at 600 0F.

The cell decreased to 4 ma within 24 hours. (Cell C11)

Conclusions

A brief paragraph will be devoted to each of the contaminants

which were tested, covering the conclusions drawn from the experimental

results previously described.

Antimony trichloride caused an increase in output after spin on,

but heating decreased the net gain. An opaque coating was formed that gave

a stable 10% increase. This gain is attributed to the antireflective

properties of the coating. Sodium silicate in conjunction with the antimony

trichloride did not appreciably affect the output. The nature of the gain

in output shows antireflection but no significant surface state activity.

Bismuth nitrate increased the output several times but the cell

was unstable when heated. The small net gain of about 15% is due to anti-

reflection. Melting the compound created an opaque white surface. The

contaminant is unsuitable for use on aluminum contact cells as it reacts

slowly with the metal.

Bismuth trichloride also reacted with aluminum contact over a 96

hour period. A negligible increase was noted prior to heating, due to a

small antireflective property. No surface state presence was discerned from

the cell's behavior.
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Lead acetate caused an increase of 24% before heating but the

output decreased to a.net gain of .6 ma (14%). The magnitude of this change

indicates antireflection rather than creation of an inversion layer as being

responsible. The contaminant formed a smooth translucent layer upon melting

but did not increase the output.

Lead chloride was responsible for an immediate and stable decrease

in output. No antireflection increase nor other activity was noted. Melting

was not attempted due to the high melting point of the compound.

Selenium dioxide gave a stable but small increase of between 5 and

15%. The compound left a clear, relatively uniform coating which increased

the output by its antireflective qualities.. .Sodium silicate in conjunction

with the selenium dioxide created a significant increase of .80 ma (400%)

but was highly unstable. The two compounds in company might be useful if a

method of encapsulation is developed which would stabilize the output.

However, most of the.increase should.be attributed to sodium silicate as

the cell followed that compound's characteristically dramatic increase and

subsequent instability.

Sodium stannate yielded a 20% increase upon application but subse-

quent heating did not prevent the cell from deteriorating to its original

value within 96 hours. The unstable gain can be attributed mostly to anti-

reflective coating action. The compound appears to lose its affectiveness

upon continued contact with the atmosphere.

Stannous chloride was by far the most exhaustively tested con-

taminant, based on early successful results. .The gain in output stabilized

at the time when stannous chloride underwent a change to a tin oxide. The

coating was transparent and displayed diffraction colors. Its application
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of an inversion layer of some intensity plus the action of a good antireflec-

tive coating. The ultraviolet response averaged less than 1.0 ma so the

presence of an inversion layer is not responsible for the major portion of

the increase. Therefore, stannous chloride is an excellent antireflective

coating relative to the other compounds tested.

Melting stannous chloride left a clear smooth layer but difficulty

was encountered in attaining good contact on the probe station. It did not

cause a significant change in output since the compound remained in a

chloride rather than oxide form. Stannous chloride with sodium silicate

showed the characteristic silicate behavior with no noticeable effect due

to the tin compound's presence. The chemical attacks aluminum contacts and,

hence, is not suitable for use on aluminum cells.

Mercuric nitrate yielded a 15% increase after its solution had

dried on the cell surface. The increase was stable with time and apparently

was due to antireflection. The ultraviolet response changed antireflection.

The ultraviolet response changed negligibly so an inversion region was not

responsible for the increase.

Ammonium phosphate had no net effect on cell output when spun on.

Melting did not yield a continuous coating and decreased the output signifi-

cantly.

The calcium phosphate in alcohol gave a stable 20% increase due to

antireflection. In water solution an even coating was unattainable and

showed no effect on the output.
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Potassium phosphate caused a 25% increase upon spin-on, but the

net effect over a 14 day period was negligible. Melting yielded a smooth

coating which would not harden and drastically reduced output.

Sodium metaphosphate showed a momentary 25% increase but the output

deteriorated to its original value within 7 days. Melting caused a stable

10% increase.

Trisodium phosphate was applied by spinning, melting, and with

sodium silicate. In all three cases it responded with unstable initial

increases and regained its original value within 24 hours.

The phosphate group described above generally responded in the

same manner. Ammonium phosphate showed no net effect, as did calcium phos-

phate in water, potassium phosphate, sodium metaphosphate, and trisodium

phosphate. Those gains which did occur were of magnitudes which suggest

antireflective action. The exception to this is trisodium phosphate in

conjunction with sodium silicate, where the characteristic large increase

occurred when the compounds were heated. The effect in this case is

attributed to sodium silicate rather than the phosphate.

Taken as a group, the contaminants tested did not yield a compound

which created a strong inversion region that was stable over long periods

of time. In general the increases in overall cell output were not accompanied

by additional ultraviolet respsonse. The most significant result of this

project is the performance of stannous chloride as an excellent antireflec-

tive coating. This compound yielded by far the most stable and predictable

data among the experimental results.
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Table 1. Results of Test on Contaminant Solutions

Contnminant Cell Initial Post High Remarks

Se2 Al 60. 62. 62. Heat causes decrease.

SbCl3  A2 73. 87. 87. Heat causes decr.Stable at 80

SbCl3  A3 11. 13. 15. Peak at 700 deg.F.

SbC 3 + Na2Si 0 A3 7.5 4. 6.2 " " " " VUnstable.

Pb(C 2 H3 02) 2  A4 4.3 5.2 5.8 " " 500 " .Unstable.

SSeO 2  AS 19. 120. 23. No increase by heating.Stable.

Se + Na Si409 AS 20. 24. 100. Peak at 700 deg.F.Unstable.
* 2 2 4 9

SnCl2*2H20 A6 11. 8. 14. " " " " .Stable.

SnC12 + Na2S409 A6 13.5 3.5 55. " " " " .Unstable.

Na3PO A7 5. 2.8 12. " "" " " .Unstable.

Na PO + Na2Si 0 A7 3.4 3.5 40. " " 600 " ..Unstable.
3 4 2 4 9

SnC12  A8 79. 86. .106. Peak at 500 deg.F. Stable.

None A9 98. - 100. Stained during processing.

A9 + Na2Si409  A9 100. 100. 100. 1st coat.Decreased with heat.

A9 + Na2Si409  A9 86. 115. 125. 2nd coat.700 deg.peak.Unstable.

Bi(N03) 2 5H2 0 A10 3.3 8.7 .. 8.7 Decreased when heated.

PbC12  All 3.4 2.9 3.4 Decreased when heated.

SnCI2  A12. 4.5 12. 12. 3 coats.Fast heat.Unstable.

(NH )2 PO4  Bl 14. 12.5 18. Decreased to initial value.

Ca3 (PO4 )2  B2 17. 18. 21. Methanol solution.Stable.

Ca3 (PO4)2  B3 40. 38. 40. Water solution.Unstable.

K2 HPO3  B4 41. 52. 54. Peak at 700 deg.F. Unstable.

Na2 lPO 4  BS 35. 43. 48. Peak at 400 deg.F. Unstable.

Na2 SnO3 31H20 B6 25. 28. 40. Decreased to initial value.
2 3 2
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Contaminant Cell Initial Post High Remarks

BLCI B7 8.2 8.6 8.6 Cell shorted in 96 hours.

Hg(NO3) 2  H20 B8 46. 30. 54. No heat.Incr.over time.

SnCI 2  (0) B9 21. 32. 32. Heat causes decrease.

SnCl2  () B10 13. 20.5 20.5 Heat causes decrease to 16.

SnCl2  (Y) B11 42. 54. 54. Heat causes decrease to 40.

SnCl2  B12 29. -5. 15. Deteriorates Al with heating.

Bi(N03)3 * Cl 22. 18.5 18.5 Decr.to zero.Melted on.

Hg(NO3)2  C2 35. 36. - Decr. to 15. elted on.

BiCl3  C3 18. 1.4 Stable at 12 with time.

SbC1 C4 19. 14. - .Decr. to 0. Melted on.

Cb(C2H302)2  C5 74. 68. - Stable at 74. "

(NH 4 ) 2 HPO4  C6:- 68. 10. - Will not form coating.

Ca3(P04) 2  C7 82. 82. - Will not melt on hotplate.

K2HPO 3  C8 25. 8.6 - Will not form solid coating.

Na2HPO4  ClO 70. 76. - Stable at 76 over time.

Na3PO Cli 30. 42. - Decr.to 36 within 24 hrs.

SnCl2  (5) E1 4.4 5.6 12. Peak at 800 deg.F. Stable.

" (X) El 12. 22. 25; 2nd coat.700 dcg.peak. "

() E2 3.3 3.4 10. 1st coat.Stable at 5.4.

" (5) E2 5.4 11. 8.4 2nd " . " " 7.4.

" (5) E2 7.4 11.5 '14. 3rd " . " " 14.

" (a) E3 3. 3. 9.2 1st " .Stable at 4.

, (a) E3 4. 12. 18. 2nd " " " 4.2.

" (a) E3 4.2 23. 23. 3rd " .Decr.to 5.7 (96 hr)
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Contaminant Cell Initial Post High Remarks

SnC12  (1) E4 4.4 5.2 16. 1st coat.Stable at 16 after ht.

" (1) E4 16.. 74. 74. 2nd " " " 21.5 " "

" (0) E4 21.5 52. 60. 3rd " . " " 60. "

SnC12  (crystals) E5 4.1 4. 6.4 Stable at 4.2 after melting.

" (1) E6 3.7 3. 15. 1st coat.Stable at 15 after ht.

" (0) E6 15. 28. 28.. 2nd " ." "25 ""

" (0) E6 25. 26. 26. 3rd " . " " 23.No 3rd heat.

* (0) E7 5. 3.7 20. 1st coat.Stable at.20 after ht.

(1) E7 20. 38. 38. 2nd " . " " 20.5 "

" () E7 20.5 25. 31. 3rd " . " " 31.No"3rd " '".

S 0) E8 2.2 2.6 3;? No heat.1 coat.Stable at 2.8.

" (k) E9 ;4.8 2.4 .. 8.2 lst coat.Peak at 800 deg.F.

S') E9 8.2 32. 32. 2nd " .Stable at 20.
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J. Tin Chloride Spin On

Because tin chloride applied to a cell and heated caused a change

that resulted in a medium output comparatively stable cell, further work

was done on this material. Several groups of cells were fabricated.

Significant increases were noted for.runs K and L.

These cells were allowed to set for a day before applying SnC1 2

and after the heat cycle the outputs increased. For instance, K4 increased

from an initial 3.5 ma to 29 ma after spin and heat, and further to 62 ma

2-1/2 hours later with no further attention. After 70 hours, K4 increased

to 72 ma Isc, and remained around this value for several weeks and then

started to slowly decay. Cell No. K8 remained about 50 ma for more than a

month.

Series L also had several cells that remained stable for at least

a month, but the output of these cells was lower than series M, between 30

and 40 ma I . A visible change took place on the surface of the cell to
sc

the degree that the surface looked roughened and diffused, and not clear

and reflective. The SnCl 2 must attack the surface and cause surface states

by a slight agitation of the surface. If so, the recombination velocity

could also increase and reduce the effectiveness of the greater short wave-

length response of the inversion layer. The UV measurements with this cell

were all less than 1 ma which substantiates the possibility of a high rate

of surface recombination.

These cells are somewhat stable but are of comparatively low

output 'and have poor UV sensitivity so this phase of the work was suspended.

Figure 14 shows the I response of several of the cells.
sc
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K. Inverting Surfaces from Evaporated Layers

Previously the cells with temporary high output have been obtained

with a sodium silicate layer deposited by spinning after the solution has

been applied to the cell. This method of application has a mild reaction

to the surface and perhaps another method of application would create the

same effect but with stability. Therefore, three cells from a batch of cells

with aluminum top contacts were chosen and a coating of sodium silicate was

provided by evaporation. Cells with etch times of 20, 40, and 100 seconds

were used. The coating on the 20 and 40 second cells was too heavy, being

closer to the evaporation source, and the output decreased by the coating on

the 100 second cell was thinner and the output increased from the original

3.9 ma to 98 ma when exposed to artificial white light and from .04 ma to

3.7 ma when exposed to the UV black light source. No heat was applied to

the cell during the evaporation or afterwards. This shows a definite indica-

tion of a strong inversion being created because of the presence of the

evaporated sodium silicate layer. Because no water vapor was present in

the evaporation or on the surface of the cell when in the evaporation, this

becomes equivalent to spinning on a solution of sodium silicate and driving

the water out with heat.

Because of this success, three other cells were chosen from the

batch of cells processed above and sodium silicate evaporated on the sur-

face. The 50 sec etch cell increased from 48 ma I to 110 ma for white
sc

light and increased from .52 ma to 3.8 ma for UV. The 60 second cell

increased from 40 ma to 105 ma and .46 ma to 2.9 ma; likewise, the 70

second cell from 6.4 ma to 50 ma and .1 ma to 2.2 ma. Thus, the pattern

seems to be consistent.
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One day later, however, the cells showed a definite decrease in

output as the following table shows:

Cell Isc white Isc UV

50 96 1.7
60 63 1.6
70 28 1.6

100 48 3.1

It seems that even though high performance is gained without heating

the cell, the same deterioration mechanism plagues the evaporated sodium

silicate cell as well as the spun on sodium silicate cell.

In an attempt to prevent this deterioration, a number of different

overcoatings were applied to the cells after a sodium silicate evaporation.

Cells 6G and 7G were given a sodium silicate evaporation followed by an

evaporated pyrex glass coating. The results follow.

Isc Isc

Cell No. Before Evaporation After EvaDoration

White UV White UV

6G 3.8 .10 105 .4.0

7G 7.4 .18 108 4.0

To ascertain the effect of pyrex glass alone, an evaporation of

pyrex was made on cells 2G and 3G with no prior sodium silicate evaporation.
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Isc Isc

Cell No. Before Evaporation After Evaporation

White UV White UV

2G 10 .18 13 1.2

3G 13 .30 16 1.3

Cells 6G and 7G were measured after one day. White light Isc was

9.5 ma and 5.3 ma and UV Isc was .32 ma and .13 ma, respectively. Again,

a decrease that shows the instability of the silicon-sodium silicate interface.

An attempt to stabilize the cell by encapsulating in a clear plastic

resin was made. Cell number 1H,whose output was 2.5 ma, grew in output to

105 ma when an evaporation layer of sodium silicate was applied. After

spinning a layer of liquid plastic resin the output fell to 2.9 ma. Cell 2H

was similarly treated and the Isc valueswere 3.6 ma, 110 ma, and 4 ma,

respectively. Evidently the casting resin has some effect directly with

the cell.

A try was made to embed sodium ions in a layer of glass by first

evaporating a layer of sodium chloride on a cell and then evaporating a

layer of pyrex glass. Cells 5H and 6H were used for this experiment and no

increase in the cell output was observed.

Sodium silicate was evaporated on cells 7H and 8H followed in the

same pump-down by a pyrex evaporation. Cell 7H went from 3.0 ma to 48 ma,

and cell 811 went from 4.0 ma to 80 ma. A day later the outputs were 12 ma

and 4 ma, respectively.
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Another group of wafers was processed to help in this investigation

(Group K). A coating of sodium silicate followed by a coating of CaO was

applied to the surfaces of two Mesa Cells. Before evaporation the output

of cell 1K was 4.8 ma I, .43 volts Voc, .1 ma UV, and the output of cell

2K was 5.1 ma Is , .42 volts Voc, .07 ma UV. After evaporation the outputs

rose to 22 ma, .43 volts, .7 ma UV and 40 ma, .46 volts, .8 ma, respectively.

Cr203 was evaporated on cells 3K and 4K with no increase in output.

Sodium borate (borax), Na2B407, was evaporated onto cells 5K and 6K, and the

output rose from 6.4 ma I to 46 ma on cell 5K and from 4.6 ma to 60 ma on
sc

cell 6K. The ultraviolet response increased accordingly. Unfortunately,

these cells were unstable also and decayed to 3.4 ma and 4.0 ma I over a
sc

weekend. The cells were given a heat treatment (6600F for 30 sec) and the

output increased to 50 ma for 5K and 80 ma for 6K but decayed to 10 ma in a

short time. Thus, borax seems to cause an inverted surface but suffers

from the same decreases found with sodium silicate.

Cell number 10K was given an evaporated coating of sodium silicate

and then coated with silicon monoxide. The Isc output rose from 5.6 ma,

but decayed to 20 ma overnight. The SiO does not protect the sodium sili-

cate from deterioration.

Further evaporation involving sodium borate covered with various

glasses were tried but, although some of them reached high output, all of

them decreased with time.

A series of experiments with sodium silicate and various evapo-

rated overlays was completed. Since a high output is achieved when sodium

silicate is evaporated on the surface of a mesa wafer, an encapsulating

coating evaporated in the same pump-down should tend to keep the output
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steady. A group of 12 cells was processed (Group N) to test the encapsulat-

ing properties of some glasses. The materials evaporated and how the cells

were handled will be itemized below and a final table of the short circuit

current as a function of the day measured will be presented after that.

Group N Cells

2x2 p wafers, mesa type, aluminum contacts, n diffusion 9450C

20 min, Si etch 100 sec.

Cells 1N and 2N were given a sodium silicate evaporation followed

by a microscope glass evaporation. They were sintered for 2 min at 4000C

after the evaporation, and then cooled slowly (4000 C to 300C in 15 min).

-Cells 3N and 4N were given a coating of sodium silicate followed

by microscope slide glass and sintered similar to cells LN and 2N.

Cells 5N and 6N received an evaporation of sodium silicate and a

3 min evaporation of microscope slide glass, sintering was the same as

other cells.

Cells 7N and 8N were coated with sodium silicate followed by a

coating of pyrex; sintering was the same.

Cell 9N was coated with sodium silicate but no glass overlay, with

sintering the same.

Cells 10N and 11N were coated with evaporated sodium silicate

and no glass. Cell 10N was sintered prior to evaporation and cell 11N

after evaporation. This experiment was performed to see if the time of

sintering would alter the stability of the cell.

Cell 12N was given a coating of sodium borate with no glass.

Sintering followed the evaporation, 400*C for 2 minutes.

The following table shows results on N group of cells. All readings

are Isc in ma.
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Date: August 1974
F S M T W Th F M T W

Cell No. 16 17 19 20 21 22 23 26 27 28

1N 26 22
(Heated)

2N 65 65 101

3N 92 68

4N 78 80 80 72 66 66 62 62 57

5N 92 92 92 75 .75 74 74 52

6N 91 90 82 72 72 42 42 34

.7N 11

8N 14

9N 78 82 15 11 10

10N 100 .66 40 28

11N 105 94 54 28

12N 90 22 19 18
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L. Contaminated Oxide on Mesa Cells

An attempt to apply or grow an oxide coating and contaminate 
with

sodium was made with little success. A coat of SiO 2 was spun on using a

commercial Emulsitone product. After appropriate heat treatment, the cell

was placed on a hot plate covered with a pyrex dome. 
A flow of sodium

contaminated steam was introduced through the top of the dbme. After a

2-1/2 hour exposure at a hot plate temperature of 600
0F, the cell output

increased to 13 ma from an original 3 ma. The cell was dipped into water

to see if the same degradation was present as the sodium silicate cells, and

no decrease was noted. After another hour on the vapor hot plate the Isc

reached 15 ma. After another 6 hours, the output did not increase at all.

Thus, an enhancement of the cell occurred but not nearly what 
is needed.

A evaporated coating of SiO was applied to a cell whose original

Is output was 17 ma. It increased to 30 ma. After 1-1/2 hours exposure

to. the steam-heat, the output decreased to 11 ma. Another 'cell was chosen

with an output of 85 ma. 'It was exposed to the sodium.steam for one hour at

300*F. A visible coating was observed on the surface (presumably salt). A

coat of SiO was applied and the output went.to 110 ma. After heating to

5000 F, the Isc dropped to 100 ma. This latter experiment was performed to

assure the presence of salt in the SiO and if the salt was applied before

the SiO, it could only escape through the SiO layer.
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M. Tin Oxide on n Wafers

Since there was some indication that tin oxide produced from the

decomposition of stannous chloride (SnCl 2) will create a stable inversion

layer when applied to a Mesa Cell, another method of applying SnO2 was

tried. Tin oxide produces a transparent coating that is slightly conduct-

ing. This coating was used by our laboratory previously, to obtain a

transparent conducting layer for the transparent electrode cell. This tin

oxide was applied by passing vapors of stannic chloride (SnCl2) and wet

oxygen over a heated silicon wafer. The gases react at the hot surface

and leave a deposit of tin oxide.

When tin oxide was deposited on a p wafer Mesa Cell using this

method, no significant increase in output was observed. When a deposit was

made on a base p silicon wafer, however, a small (2 ma, .2 v) response

resulted, but with opposite polarity to that expected. That is, the bottom

of the p wafer was negative and the tin oxide layer positive. This is

reverse p.olarity if we assume the tin oxide to provide an n-type layer.

A number of p over n mesa inversion cells were fabricated. A

group of four individual cells was processed with the following schedule:

1. Clean wafers ( n - 2-4 ohms cm, 1" dia)

2. Predep diffusion, 1160 0C, 5 min, BN source

3. Drive in, 1050 0 C, 15 min

4. Evaporate metal front surface

5. Photoresist finger pattern

r 6. Etch metal and silicon past junction

7. Evaporate back contact

8. Deposit SnO 2

9. Test
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All of the cells were measured before the SnO2 growth and a short

circuit current of around 1 ma and an open circuit voltage of about .3 volts

was found for each cell. Aluminum contacts were used for this group.

The results for this group (III) are found below:

Cell No. Isc(ma) Voc(volts) UV (ma)

III A 57 .42 4.0

III B 37 .36 2.0

III C 47 .40 3.0

III D 72 .42 4.0

Cell No. III B was given a thinner coat of SnO2 than the rest, and

the lower output can be attributed to it. The SnO 2 slopped over the edge

during deposition, but this was removed with.HF. The UV response indicates

a shallow junction such as an inversion layer.

Another group processed that gave interesting results was Group V.

Group V consisted of four cells, two with aluminum contacts (A and B) and

two with Ti-Ag contacts (C and D). They were diffused at 10500C for five

minutes and driven in at 1050 0C for ten minutes. Cell V-A was given a coat

of SnO2 that'brought the cell output to 32 ma Isc with .41 volts, Voc and

UV of 3 ma. Cell V-B started with 15 ma due to a thin coating of SnO2, but

moved to 35 ma on the second coat and 33 ma on the third. The open circuit

voltage was .43 volts and the UV response at 3.7 ma. Cell V-C went from

40 ma I to 18 ma on the second coat. Cell V-D was coated first with a
sc

very thin coat bringing the cell output to 26 ma I , .43 volts V and 3.0

ma UV. A second coat yielded 31 ma, the third 31 and the fourth 23 ma.

The open circuit voltage decreased slightly as successive coats were applied

as did the UV response.
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It is apparent that the tin oxide thickness affects the output,

increasing to a maximum and then decreasing. The maximum seems to yield a

blue color so the maximum is probably a combination of surface state density,

absorption in the oxide and antireflection coating.

Another batch of cells was fabricated and a fresh solution of

SnCl was used to deposit the tin oxide. The output of these cells was

higher than the others. The results were as follows:

Cell Isc(ma) Voc(volts) UV (ma)

A 105 .46 3.7

B 65 .42 3.8

C 98 :.46 3.1

D 105 .46 3.0

E 105 .40 2.5

F 76 .40 2.5

A measurement of these cells seven days later, showed the follow-

ing decreases:

Cell Isc(ma) Voc(volts) UV (ma)

A 94 ".40 3.7

B 37 .40 3.1

C 82 .40 3.5

D 56 .43 2.9

E 82 .29 2.4

F 47 .26 2.4

Every cell in this batch suffers some significant decrease. It

is interesting to see that although the total response to tungsten light

decreased, the response to ultraviolet remained quite steady.
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The higher output on these cells is probably due to a change in

the method of depositing SnO2 . Heretofore the reaction tube had been open

and exposed to the air, whereas the tube was closed when the deposition was

started with this batch.

It was noticed that the contact patterns were changing in appear-

ance and some of them were lifting, so in order to check whether the contact

SnO2 coating or its method of deposition was affecting the contact and

causing all or part of the deterioration of the cell, two cells were fabri-

cated of the non-mesa variety similar to the contaminated oxide cell but

using tin oxide on n wafers instead of sodium ions in an oxide layer. The

fabrication procedure was:

1. Grow clean oxide on wafer.

2. Etch finger pattern windows ir oxide.

3. Diffuse n.

4. Remove oxide.

5. Deposit SnO 2.

6. Etch finger pattern over diffusion in SnO 2 '

7. Deposit metal.

8. Etch metal in finger pattern.

Steps were also included to prepare the back of the wafer.

Thus a cell is created with the tin oxide creating the inversion

layer, but the Ti-Ag contact is not in contact with the SnO2, neither was

the metal present while the SnO 2 was deposited. These two cells were desig-

nated as Group XVI and the outputs were:
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Cell Isc(ma) Voc(volts) UV (ma)

A 40 .41 1.0

B 43 .38 1.2

These cells were observed for two months and no change in any of

the values above was noted, neither was there any visible change in the

appearance of the contacts on the cell. Thus, stable mesa cells of the

p or n variety could be fabricated if the contact versus tin oxide coating

method problem could be solved.

N. Incremental Etch Experiment

A number of wafers was prepared with standard processing consist-

ing of a phosphorous diffusion at 9450C for 20 minutes, a Ti-Ag metal

deposition, and a photoresist spin and develop using the 20 finger mask.

Each cell was etched at different times so different mesa depths were

obtained. This allows a look at the cell response as the diffusion becomes

shallower and the surface nearer the junction. An increased ultraviolet

response may result because of the removal of the dead layer and the

existence of the junction electric field nearer the surface. Another reason

for a proposed greater ultraviolet response is the etch removal of some of

the imperfections created by sawing during the slicing operation to create

the wafer.

The results of one of these experiments showed an increase in

power output for etched cells over the non-etched cells. One must remember

that the diffusion was done at 9450 C for 20 minutes and yields a junction

depth of approximately a micron which produces a cell of lower output than

the conventional shallow junction type. The etched cells, although higher
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in power than the non-etched ones, were still lower in output than the

conventional "blue" cells used for space applications.

Figure 15 shows a number of I-V curves labelled with the time in

seconds the cell was etched. A conventional cell is also shown to compare

the I values show a rise and then a definite fall, peaking at about 1
sc

second. The open circuit voltages hold steady until the lower I 's aresc

obtained.

Each of the cells that received an etch was coated with a spun-on

layer of sodium silicate. The purpose of this coating was to see if a

combination mesa cell could be developed wherein the n diffusion is etched

back to yield a weak diode and therefore a weak photon collector and yet

have a significant increase in power output by creating an inversion layer

at the surface. Figure 16 shows the same cells as in Fig. 15, but with a

coating of sodium silicate. The output of most of the cells increased by

about 20%. The output of the 2-1/2, 3, and 3-1/2 second etches, however,

increased significantly as shown in Figures 17, 18, and 19, respectively.

The 3 second cell had an added heat treatment that caused the output to

increase even more.

It is obvious that the addition of the sodium silicate caused an

increase in each cell. For those of higher output the function of this

layer was perhaps not much more than an antireflection coating. But to the

others, an increase in the p-n collection efficiency is noted. The

inversion layer adds to the weak diffused junction and both of them are

responsible for the output as seen. A change of I from 35 ma to 61 masc
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for the 3 second etch cell after the sodium silicate, represents more

than an antireflection coating, and the further increase to 97 ma for

this cell when heated is further evidence that an inversion layer is

present.

Another experiment similar to the one just described was

completed. An etch consisting of 45 ml acetic acid, 16 ml nitric acid

and 4 ml of hydrofluoric acid was used to etch into a junction formed on

the surface of a 2x2 cm wafer at 945 0C for 20 minutes. The 20 finger

pattern contact was titanium-silver. Eleven cells were used in the sun

(Group A), etched in increments of 5 seconds ranging from 0 to 50 seconds.

After the deposition of a Ti-Ag back contact and a sintering

operation, the cells were measured for Is under a tungsten light. The
sc

following data were obtained:

Time of Etch (sec.). Isc (ma)

0 80.0
5 92.0

10 39.0
15 5.0
20 2.4
25 4.2
30 4.2

.35 3.5
40 3.1
45 2.7
50 3.2
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One coat of sodium silicate was spun on the surface and the

output was changed:

Time of Etch (sec.) Isc (ma)

0 93.0
5 110.0

10 92.0
15 50.0
20 1.0
25 .3.0
30 4.0
35 2.5
40 4.5
45 (eliminated)
50 4.0

After heat treating to 700 0F:

Time of Etch (sec.) .Isc (ma)

0 86.0
5 94.0

10 94.0
15 70.0
20 2.0
25 24.0
30 18.0
35 18.0
40 4.0
50 * 5.0

Two days later with no heating, the outputs were:

Time of Etch (sec.) Ise (ma)

0 93.0
5 110.0

10 40.0
15 4.0
20 2.0
25 3.0
30 3.0
.35 2.5
40 3.0
50 3.0
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Significant changes have occurred for some of these cells. The

change in the 0 and 5 sec.. cells is probably due mainly to an antireflection

coating. The change in cells 10, 15, 25, 30 and 35 sec. is probably due to

an inversion layer induced in the surface by surface states created by the

sodium silicate. Notice again there is a decline of output over time for

the surface treated with sodium silicate. Even the fresh spin-on deteriorated

although no heat was applied. It is interesting to see the deterioration

ended at the original value of output except for the high output cells whose

increase was due to the antireflection properties of sodium silicate.

Another group of cells (Group B) was processed the same as Group A,

only the etch times were closer together to get a more detailed look at the

region of high output around the 5 sec. etch.. The list on the following page

shows the change in I output after each operation.
sc

Again these data show a definite increase when the sodium silicate

is introduced and especially after heating. The increase ratio for each etch

time is shown in the second list on the -following page.
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1 coat
Time of After Sodium 700OF 5 Days
Etch Sintering Silicate Heat Later
(sec.) (ma) (ma) (ma)

0 74.0 86 94 86.0
1 84.0 102 113 108.0
2 80.0 96 113 105.0
3 82.0 105 115 110.0
4 .82.0 105 113 113.0
5 75.0 100 105 100.0
7 10.0 15 50 11.0

10 26.0 45 76 33.0
12 4.0 10 . 30 7.0
13 3.2 11 20 6.0
15 4.0 7 28 4.5

Time of Etch (sec.) Ratio of Change (%)

0 1.27
1 . 1.35
2 1.41
3 1.40
4 1.38
5 1.53
7 5.00

10 2.90
12 7.50
13 6.30
15 7.00

It looks as though the heated sodium silicate had an effect on

even the shallower etch cells greater than would be expected from an anti-

reflection coating unless the sodium silicate is superior to the silicon

monoxide used on conventional cells. An indication of a contribution above

antireflectivity is evidenced in observing that the output decreases in time

during the five days after heating. This is typical of a cell whose output

depends somewhat on an induced layer created by a contaminated insulating

layer on surface states.. Thus perhaps an inversion is being formed at the
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surface of even the shallower mesas and enhancing the collection of the

photon produced carriers, maybe in the shorter wavelengths. A definite

increase can be seen for those cells etched beyond the n diffused layer

or close to it. This high increase is due to the formation of an induced

junction.

An. experiment was performed to gauge the antireflection proper-

ties of sodium silicate. A V-I curve of a conventional space cell coated

with SiO was taken, and subsequently, the SiO antireflection coating was

removed, and another V-I curve was taken. Sodium silicate was applied by

spinning like the other cells, and a V-I curve taken of the result. The

curves are shown in Fig. 20 showing all three for comparison. The output

of the cell fell from 116 ma I to 78 I after the coating was removed
sc sc

with hydrofluoric acid. This is a decrease of .67 or an increase .of 1.49

if the effectiveness of the SiO is wanted. After the coating of sodium

silicatewas applied, the output increased to 98 ma, an increase of 1.26.

Thus, the conclusion can be reached that the sodium silicate is not as

effective as the silicon monoxide when used as an antireflectant. This

experiment lends credence to the argument that an inversion layer is

helping with the output on the shallower mesa cells.

Several other groups of cells were etched incrementally and the

results observed. An interesting group was Group "D". This was a group

of eight cells etched with an even slower etch than before using 60 ml

acetic acid, 16 ml nitric acid, 4 ml HF. The increment was 10 sec. start-

ing at 20 sec., and ending at 100. The 60 sec. cell was removed for

another experiment. The ultraviolet response was measured for this group.
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This was done by placing an ultraviolet "black light" fluorescent tube near

the surface of the cell. The ultraviolet radiation was weak but enough to

give significant results. For comparison, a conventional cell will respond

to this "black light" source with a response of 1.5 ma Isc

The following lists show the results obtained.

After Sinter After Sodium Silicate
Etch White Ultraviolet White Ultraviolet
Time Light Isc Isc Light Isc Isc
(sec) (ma) (ma) (ma) (ma)

20 84.0 .30 92 .52
30 85.0 .30 92 .57
40 85.0 .28 92 .55

50 64.0 .35 96 .62
70 2.6 .02 8 .80

.80 3.8 .10 12 1.30
90 1.5 .02 2 .02
100 8.7 .20 40 .9

After 7000F After 1 Day
Etch White Ultraviolet White Ultraviolet
Time Light Isc Isc Light Isc Isc
(sec) (ma) (ma) (ma) (ma)

20 115 2.6 110.0 .51
30 115 2.3 110.0 .58
40 110 3.3 105.0 .59
50 120 3.5 98.0 .52
-70 60 3.4 3.4 .03
..80 71 3.5 3.1 * .06
90 7 .9 2.0 .02

100 98 3.5 34.0: 1.00
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From these data we see the same trend as in the other groups.

There is a significant increase after the sodium silicate is applied and

an increase, usually much bigger, when the cell is heated and then the

decrease in time due to unknown causes. The interesting part of these

data, however, is the change in response to the UV light indicating a

greater sensitivity to the short wavelengths creating pairs at the surface.

Since this is where the inversion layer is, the stronger the response to

UV, the stronger is the inversion layer. This could be a good indication

of the existence and extent of an inverted surface. Cells etched for 20,

30, and 40 sec. decreased but little for the day after being heated when

exposed to white light, but changed greatly when exposed to UV light.

Conventional cells have a UV output of about 1.5 ma.

The cell that was etched for 100 sec. is interesting. Some inver-

sion existed before the sodium silicate spin and jumped to 40 and 98 when

the spin and heat was applied, and although the original output at 8.7 ma

was one tenth of the top three, the UV response was only two thirds of the

top three, a strong evidence for an inversion layer.

IV. CONTAMINATED OXIDE CELL

The contaminated oxide cell is a stable cell. It is not fabri-

cated like the mesa cell. The inversion layer depends on the presence of

positive ions in the oxide rather than the creation of surface states at

the silicon surface. Contaminated oxide cells produced a year ago are

still steady.

The contaminated oxide is grown by bubbling oxygen through a

water solution containing a sodium compound. A small amount of the sodium

goes over with the steam and provides the ions in the oxide for inversion.



Several successful runs were made with the contaminated oxide

cell. Run No. Na 4 consisted of four cells. These were fabricated with

the following procedure:

1. Grow contaminated oxide on p wafer.

2. Cut finger pattern into oxide.

3. Diffuse n type into window.

4. Deposit metal.

5. Etch metal into finger pattern.

6. Process back of wafer for good contact.

Aluminum was used for the contact for this run. The results

were:

Cell Isc (ma) Voc (volts) UV (ma)

1 16 .47 .7
2 20 .45 1.0
3 27 .46 1.4
4 52 .48 2.2

These cells have been steady with no sign of decreasing. The UV

response is good and the open circuit voltage is adequate.

Similar results were obtained with run No. 6. Fabrication was

the same except more salt was used in the bubbler to increase the contamina-

tion in the oxide. The data taken are listed below:

Cell Isc(ma) Voc(volts) UV (ma)

1 27 .47 1.0
2 13 .44 .4
3 -- --- -

4 17 .47 .2
5 16 .46 .4
6 48 .48 2.2
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Many more runs were started but the sodium began to cause a crust

on the surface of the cell and further processing was stopped on each batch.

After cleaning the furnace tube and the wafer boat a clear contaminated

oxide could be grown. A change in processing procedure was also initiated.

Since the contaminated oxide is subjected to a high temperature for about

15 minutes during the diffusion step, some of the sodium probably escaped

the oxide and left a weaker inversion reagion. Therefore, a step was added

after the diffusion to put back some of the sodium. This extra step con-

sisted of putting the wafer into the contaminated oxide tube again for about

5 minutes in contact with the sodium vapor.

Run No. 13 used this procedure. Ti-Ag contacts were used also.

The results are:

Cell Isc (ma) Vo (voits) UV (ma)

1 64 .43 2.5
2 59 .43 2.4
3 59 .42 2.5
4 62 .42 2.3

A significant increase in I was obtained over the other batches.
sc

The UV response also increased. No explanation is offered at this writing.

These cells will undoubtedly be stable for at least a year.

All four of these cells were sent to JPL for evaluation. A plot

of the I-V characteristics for cell Na 13-4 is found in Fig. 21.

I-V curves were taken in the sun to note any differences in re-

sponse between the artificial tungsten source and the natural source. Figure

22 shows the comparison. The artificial tungsten source was adjusted to

give 130 ma Isc on a conventional solar cell calibrated with a standard cell

to equal the short circuit current at 140 mw/cm2 in sunlight. The curve
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taken in the sunlight was adjusted to equal 130 ma I on the same conven-
Sc

tional cell. There is a decided difference in the response both in the-short

circuit voltage. The greater response to sunlight indicates a stronger

sensitivity to the shorter wavelengths.

Measurements made at-JPL of the spectral response of the contami-

nated oxide cells showed a high output in the shorter wavelengths but a

definite low output in the longer wavelengths. This indicates a short life-

time in the bulk p material due to thermal quenching during processing. The

low short circuit currents compared with conventional cells was due to this

short lifetime. To increase the bulk lifetime, an annealing step was added

to the processing procedure after the last exposure to high temperature.

Since the last high temperature step is the sodium impregnation step, the

cells were removed from this furnace slowly to allow crystal structure changes

to occur to decrease the lifetime.

Adding the annealing step brought the short circuit current to about

100 ma instead of 60 ma. A slight increase in the short circuit current and

a better curve factor was obtained by using a contact pattern with 30 fingers

instead of the 20 finger pattern used above. A V-I curve showing the output

of an annealed contaminated oxide cell with 30 fingers is shown in Fig. 23.

A curve of a 10 ohm-cm conventional cell is also shown. These curves were

taken in the sun at 118 mw/cm2 . The maximum power of the contaminated oxide

2
cell is 39.6 mw for 4 cm . This is an efficiency of 8.4%. The conventional

cell efficiency is 10%. The curve factor is equal to 39.6/53.5 = .74. This

is a significant improvement over the previous performance of the contaminated

oxide cells.
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The following processing steps were used to fabricate the higher

output contaminated oxide cells:

1. The wafers are cleaned by scrubbing with a Q-tip. Acetone and

isopropyl alcohol are used. After a deionized water rinse, the wafers are

blown dry with N2.

2. A 50-minute oxidation at 11000C follows. Wet oxygen, produced by

bubbling 02 through a bubbler, is passed down the furnace tube at .3 L/min

in a 3" tube. The water in the bubbler is hot. An oxide coating of about

5000 A is grown. A dry oxygen flow is also present at .8 L/min. Wafers

are inserted and removed rapidly.

3. A standard photoresist procedure is used to cut holes in the oxide

for diffusion. Pattern used is the finger pattern.

4. Diffusion occurs at 9450 C for 15 minutes. Phosphorus derived from

nitrogen bubbling through POC13 is used as the dopant. The POC13 temperature

is maintained at 140 C. The flowrate of N2 through the POC13 is .2 L/min, of

N2 direct is .6 L/min and 02 direct at .6 L/min. The wafers are inserted

and removed rapidly.

5. The oxide on the wafers are then impregnated with sodium by

exposing the wafer to 10500C for 15 minutes with sodium chloride vapor being

carried down the tube with flow of N2 . The sodium chloride is set in a boat

in the tube at the edge of the furnace.

6. After the 15-minute exposure to Na vapor, the NaCl source is

removed and the wafers are pulled to a temperature of 800 0C in the furnace

tube. Annealing then takes place by pulling 1" per 10 minutes until outside

the furnace but still in the tube. The final temperature is approximately

5000C.
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7. The wafers are briefly dipped in a 10:1 ammonium fluoride (40%

solution) HF etch. This removes the thin oxide in the diffusion areas but

leaves about 3000 A over the p areas.

8. A deposit of Ti-Ag is evaporated on the top surface of the wafer.

-5
Evaporation takes place at 10- 5 mm Hg.

9. A protective wax coating is applied to the top of the wafers and

are subjected to a Si etch that removes the n diffused layer from the bottom

and sides of the wafers.

10.. An evaporated layer of Ti-Ag is applied to the back.

11. The wafers are sintered at 600*C for 5 minutes under an atmosphere

of forming gas.

V. MEASURING APPARATUS

The apparatus used to trace V-I curves of the solar cells tested

is pictured in Fig. 24. A variable resistor is used to load the cell in order

to obtain the V-I curve. When the variable resistor is set to zero ohms, the

short circuit current is obtained. When the variable resistor approaches

infinite ohms, the open circuit voltage is obtained. Either the sun or a

Sylvania FBE lamp can be used as a light source for the curve tracing setup.

VI. CONCLUSIONS

The mesa cell has the advantage of a more simple fabrication pro-

cess. Only one masking operation is necessary-and that can be done by

photolithography or applique, such as silk screening. The same etch that

etches the front mesas also etches the back diffusion and the edges. Dead

layers and mask damage to the surface are greatly reduced. The short wave-

length response compared to other solar cells is definitely greater. If

other problems with this cell could be solved, the possibility of a more
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efficient cell exists. The main problem, of course, is the gross degradation

of the output. So far the inversion layer has been created only by surface

states and not by ionic contamination in the transparent layer. Surface

states are usually unstable and therefore the cell output is unstable. Fur-

ther investigation might reveal a stable surface state combination. Tin

oxide on n wafers shows some promise for terrestrial applications because

the deterioration appears to be in the contact rather than the inversion

layer. A different procedure of tin oxide deposition or a protective coating

over the contact area might produce a stable cell.

Another avenue virtually untried is the construction of a mesa cell

with a contaminated transparent inverting layer. Since the metal contact is

present after the etching process, high temperature depositions cannot be

made and therefore a thermally grown oxide contaminated with sodium as in the

contaminated oxide cell cannot be done. Lower temperature deposition with-

isolated ions might be a possibility. This would yield a stable mesa cell.

Encapsulation does not seem to be the answer to the instability

problem. Most likely, the surface is being passivated by a thin layer of

oxide that reduces the surface state density. Heating causes the sodium

silicate, for instance, to penetrate this small oxide layer and set up the

surface states again, only to have an oxide layer slowly form and destroy

the inversion layer. Since some oxygen is present before encapsulation, the

rate is slowed down, but the process proceeds.anyway. Presence of water

vapor acts as a catalyst to speed the rate of oxidation.

Fortunately, the ionic contaminated oxide does yield stable out-

puts. The fabrication steps for this cell require two photolithographic

steps which is a disadvantage. Generally the output has not been as large
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as for the mesa cell (80 ma I vs. 110 ma), but recent experiments show a

short circuit current of over 100 ma. This higher output is due to an

enhancement in the infrared collection. Data taken at JPL on the spectrum

sensitivity of the contaminated oxide cell shows a large deficiency in the

long wavelengths. An annealing step was added to the fabrication of the

recent cells and a greater output was obtained.

VII. FUTURE INVESTIGATION

Since a stable output is obtained with the contaminated oxide cell

and the addition of an annealing step has increased the output significantly,

further experiments could be done to increase the efficiency. An investiga-

tion of the annealing procedure to maximize the infrared collection would

help. An investigation of other ions .besides sodium to serve as the con-

taminate might prove fruitful. New methods of introducing the ionic contami-

nation could be useful in reducing the compilation of fabrication.

For terrestrial applications the mesa cell with tin oxide on n wafers

has possibilities. It is more sensitive in the UV and could be made stable if

the contact metal versus method of tin oxide deposition problem could be

solved. Since radiation damage is more pronounced in n wafers, this cell

would not be used for space application.

For p type wafers and mesa cells, a search for a transparent layer

that would harbor isolated ions and could be applied at low temperatures

(< 6000 C) would allow the mesa cell to be stable and produce cells of high

output.

A combination of the n layer on p diffused cell and the inversion

layer cell might yield a superior cell. The n layer could be etched in the
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mesa fashion, but not completely through the n layer but enough to remove

some of the dead layer. A layer of inverting material is then applied and

the inversion layer enhances the n diffusion already there to make it more

blue and UV sensitive.
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